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Analysis of previous calculations indicates that the observation of an irregular overtone/combina- 
tion spectrum implies increasingly close local-mode near-degeneracies in the higher overtone states. 
This behaviour is accurately reproduced by a model of two harmonically coupled anharmonic oscil- 
lators, when the anharmonicity parameter exceeds the coupling strength, the effect being independent 
of the momentum or potential origin of the coupling. The same model reproduces familiar normal- 
mode behaviour in the opposite limit. Applications of the model indicate local-mode behaviour for 
H 2 0  and CzH2 and normal mode features for CzD2 and SO2, the dominant inter-bond coupling in all 
cases except HzO being due to cross-terms in the kinetic-energy operator. In HzO such momentum 
coupling is combined with an approximately equal potential coupling contribution. 

1 .  INTRODUCTION 

Recent experimental evidence 1--5 for a bond-localised rather than a normal-co- 
ordinate picture of X-H stretching vibrations comes from the stability of the higher 
overtone bands to partial deuteration and from the decreasing overtone bandwidths 
with increasing excitation. Theoretical interest in a local-mode description of X-H 
vibrations has a longer history, the main argument until r e ~ e n t l y ~ . ~  being that poten- 
tial coupling between the bonds is relatively unimportant compared with a cor- 
rectly anharmonic description of the individual bond potentials,*- l2 The tacit assump- 
tion here is that the observed frequency splitting between vibrations associated with 
identical XH bonds is attributable to momentum (G-matrix) coupling, but the same 
argument could be advanced with more justice for vibrations involving heavy peri- 
pheral atoms and hence much stronger momentum coupling (the case of SOz is dis- 
cussed below). This suggests that a bond-separable potential model would not be 
peculiar to XH systems. Moreover, our own quantum-mechanical ' and classical 
studies6V1' have demonstrated a bond localisation of certain vibrational states in a 
sense akin to that required by the experimental  observation^'-^ even in the presence of 
strong potential coupling between identical bonds. 

The purpose of this paper is to argue that localisation in this second sense is attri- 
butable to quenching of the interbond coupling by the anharmonicity of the individual 
bond potentials. To do this we offer a simple model of harmonic momentum and 
potential coupling between degenerate anharmonic oscillators which is shown to re- 
produce incipient local-mode features of observed spectra and the more obvious 
effects shown by our previous extensive numerical calc~lat ions.~ The model also 
goes over naturally to the familiar normal-coordinate picture in the limit of weak bond 
anharmonicity, and covers all intermediate cases. The present formulation covers 
both direct coupling between two identical bonds and indirect coupling through a 
third degree of freedom, but the model allows extension to any symmetrical system 
and could be developed to include farther anharmonic coupling terms without disturb- 
ing the structure of the theory. 
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This theory is first set in context in section 2 below, by demonstrating the irregular 
nature of the overtone/combination spectra of H 2 0  both as observed experiment- 

and as calculated l 9  on the Sorbie-Murrel120 potential surface. Other localis- 
ation characteristics found in previous c a l c ~ l a t i o n s ~ ~ ~  are also briefly reviewed. The 
model is then developed in section 3 and the predicted characteristics of the overtone 
spectrum are described in section 4. Applications to H20, C2H2, C2D2 and SO2 are 
given in section 5. Finally the main conclusions are summarized in section 6. 

2. LOCAL-MODE CHARACTERISTICS 

Previous quanta1 calcdations on the stretching vibrations of the Sorbie-Murrel12" 
model for water have been extended to include the effect of the bending vibration19 
with very 
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FIG. 1.-Energy levels for the first five (vl, 0, v3) overtone manifolds of H,O. For each manifold index 
v = vl + v3, the figures show (a) the Morse energy levels as given by eqn (32), labelled by local mode 
quantum numbers [n,, nb ] ,  (6) calculated level positions designated (k) according to the symmetry 
under interchange of the bonds, and (c) experimental level positions labelled (vl, v2, v3) The energy 

zero for each manifold is the lowest Morse eigenvalue. 

obtained by these extended calculations, and presented in relation to the experimental 
 level^,'^-'^ labelled by conventional quantum numbers (ul ,  v2, u3), and to the levels 
[n,, n,l implied by a separable Morse approximation for each bond, with 

En = (n  + 3)hw - (n + &)'hxw, 

(fiwlhc) = 3876 cm-', (hxco/hc) = 84.4 cm-l.* 
taken as the lowest Morse level, measured from the zero-point energy, 

The origin for each manifold is 

E[Ou] = vhco - v(u + 1)hxo (2) 
where u = u, + u3 = n, + nb. 
to interchange of the two bonds. 

given manifold. 

gies, with equivalent wavenumber units (hoihc)  and (hxo /hc ) .  

The symbols & designate the symmetry with respect 

The most striking feature is the marked irregularity of the level separations in any 
For example the intervals between successive experimental levels in 

f r o  and hxco are ener- * In the notation adopted here, w and xw have dimensions of frequency. 
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the v = 2 manifold are 49 and 195 cm-’, and the calculated disparities become pro- 
gressively further exaggerated until the intervals in the u = 5 manifold become 0.1, 
599, 44, 274 and 224 crn-l. This pattern may be understood in terms of an increased 
trend towards local mode doubling of adjacent levels as the disparity between the local 
mode numbers [n,, n,] increases. Seen in conjunction with the Morse eigenvalues, 
this behaviour is plausibly attributed to a perturbation that splits the degeneracies in 
increasingly high order on moving down any given manifold. This indicates a pro- 
gressive decoupling between the stretching of the two OH bonds in the very close 
doublet states. 

A second feature, not demonstrated by our previous  calculation^,^ which sup- 
pressed the bending vibration, is that the magnitudes of the local mode splittings in 
H,O are largely unaffected by the level of excitation of this bending mode, as shown 
in fig. 2. 
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FIG. 2.-Calculated H,O local-mode splittings A = E[M, ,  nb+] - E[II , ,  n i l  as a function of bending 
quantum number u 2 .  Points marked by S on the u2 axis are taken from a stretching-only calculation.’ 

Other local-mode features of previous calculations, but not discussed in detail below 
are the transition from normal-coordinate to bond-coordinate selection rules as the 
energy  increase^,^ and the spatial localisation of the wavefunction in relation to the 
classical trajectory relevant to the state in question.7* l2 

3. H A R M O N I C A L L Y  C O U P L E D  D E G E N E R A T E  A N H A R M O N I C  
O S C I L L A T O R S  

D I R E C T  C O U P L I N G  

Direct harmonic coupling between anharmonic oscillators with coordinates 
(qa, qb) may be represented by the Hamiltonian 

Hdir = HJ;: + HJil,) (3) 
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with 
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It is assumed for simplicity that any coordinate dependence of the effective masses p 
and ,uab can be neglected. The extension to indirect coupling through a third coordi- 
nate qc is outlined below. 

Two simple limiting cases may be recognised, the first arising for Hi:: = 0, when 
the separability of H implies a doubly degenerate anharmonic oscillator spectrum, 
as labelled by the local mode labels [n,, n b ]  in fig. 1. The second limit occurs when the 
anharmonicity of the bond potentials V(q,,) is neglected; thus 

V(qv) = + kq:; v = a, b. (6) 

This leads to the normal-mode picture, with coordinates conventionally labelled (ql, q3) 
for the examples which follow, 

41 = 2-'(qa + q b ) ,  q 3  = 2-'(qa - q b )  (7) 

and harmonic frequencies 
t 

(9) 

Notice for future reference that the two frequencies remain degenerate even in the 
presence of harmonic coupling if by chance 

kab P a b  = k p -  (10) 

Even the most minor anharmonic perturbation will lead back to the local-mode picture 
in this case, showing that the two types of harmonic interbond coupling can act in the 
same or in opposite senses according to the relative signs of ,&, and k a b .  

The model adopted for the anharmonic oscillators is such that the eigenvalues of 
H'O) are given by the Morse expression: 

E(n,, n b )  = 2 [(nv 4)hw - (11" + 3)'hwXl. ( 1  1)  
v = a,b 

The coupling matrix elements will, however, be approximated by means of the har- 
monic oscillator identities 

where k is the effective force constant, k = pm2,  for the unperturbed motion. The 
corrections required for a full Morse expansion, of order (cq 'w)  for the lowest states, 
are assumed to be at most comparable with those due to inclusion of cubic and higher 
terms in the potential. As such, they would be required for any attempt to fit the 
spectrum exactly, but they are not expected to alter the qualitative picture. Eqn (12) 
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and (13) carry the advantage of Anv = 1 selection rules, and simple analytical matrix 
elements throughout. 

In this approximation the only non-zero coupling matrix elements may be divided 
into those which couple states within the same ( v  = na + nb) manifold, namely 

The first type are taken into account in first order, by constructing a manifold coupling 
matrix with diagonal elements given by eqn (1 1 )  and off-diagonal elements by eqn (14). 
The second type give rise to a common second-order shift for all diagonal elements in 
the manifold : 

INDIRECT C O U P L I N G  

The extension to indirect coupling through a third coordinate qc is achieved by 
augmenting Hdir by a harmonic-oscillator Hamiltonian for the qc motion and further 
harmonic-coupling terms. Thus 

The resulting additional matrix elements are analogous to those given by eqn (14) and 
(15 ) ,  but with the coupling strength expressed in terms of 

and 

where 

It is assumed in the model that the magnitude of this coupling is small compared 
with the energy difference (hw - hcu,) as will normally be the case when hco applies to 
the X-H stretching motion and w2 is an H-X-H bending frequency or a stretching 
frequency involving larger masses. The effect of the indirect coupling may therefore 
be taken into account by second-order perturbation theory. Again two types of 
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interaction may be identified. 
perturbed energy level 

First there is a second-order correction to each un- 

Eo(na, n b ,  nc) = 2 [(nV + &)hOJ - (nil + *)’hxw] + ( n c  + *)hwc, (21) 
v =  a,b 

namely 

n’ # n 

Secondly the second-order coupling between states Ina, n b ,  n,) and In, + 1, n b  - 1, n,) 
gives rise to matrix elements within a given anharmonic manifold of the form 

Since eqn (22) and (23) have precisely the same dependence on the quantum num- 
bers n, and n b  as the corresponding direct coupling terms given by eqn (17) and (14) 
respectively, the effects of both direct and indirect coupling can be taken account by 
diagonalising a single intramanifold tridiagonal matrix for each u = n, + nb level of 
the system. The elements of the effective harniltonian are given according to eqn 
( 141, (1 71, (22) and (23) by 

(nay ??b, n,lHeffina, lib, ?I,> = 2 [(n, + 3)hw‘ - (Ha + 3)’hxwI + (nc + +)ti.>: 
Y = a,b 

<na + nb - 1, nclHeff\na? n b ,  nc> = + 1)nb13 (24) 

where w’ and 0); include second-order corrections to the unperturbed frequencies; 

w’ = w - ( a  + P)’/2iiw - (-ac + pc)”h(U -+ LO,) - ( - a c  - p,)’/ii(w - (3,) 

a; = w, - 2(a, + PC)’/h(.l + w,) + 2(-a, - P,)’/ii(.> - c0,). (25) 
Similarly the total coupling strength parameter is given by 

3, = --a + p + (‘, - P C ) ” h ( . . ,  - w,) - (ac  + P,>”h(.., + 4. (26) 
Three points are worthy of notice. First the symmetry in na and n b  allows an 

immediate factorisation of He,, into symmetric and antisymmetric parts. Thus the 
energy distribution in the uth manifold requires at most diagonalisation of two (u + 1)/2 
dimensional matrices. Secondly both the coupling strength il and diagonal term 
differences are independent of the excitation state n, of the indirect coupling mode. 
This is consistent with the behaviour shown in fig. 2. Finally eqn (26) shows that the 
various contributions to ,I may act in opposite senses. In particular the case cc = /I, 
a, = pc = 0 corresponds to the situation envisaged in eqn (lo), where the two types 
of harmonic coupling cause a frequency shift without removing the zero-order de- 
generacy. 

4. EIGENVALUE STRUCTURE OF THE OVERTONE M A N I F O L D  

The nature of the eigenvalue spectrum for any given manifold is readily apparent 
from the structure of the reduced coupling matrices. These are presented below in 
symmetrised and antisymmetrised form for u = 1-5 using the compact notation 
E[n,, nb] to indicate the appropriate sum of Morse eigenvalues, and H&u) for the 
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coupling matrix itself. The energy dependence on n, is suppressed, as irrelevant to the 
level splitting within the manifold. 

H'+'(l) = E[O, I ]  = A ;  H(-'(l) = E[O, 11 - 3, (27 

[ 0, da, E[2, 31 + 3A 0, dgA,  E[2, 31 - 32 1 . (30) 

The two quantities of importance are the Morse anharmonicity parameter hxco, 
which determines the diagonal energy differences, and the coupling strength A. The 
nature of the eigenvalue spectrum depends on the ratio between them. 

For small (Alhxco) there is evidently a first-order splitting between the two E[O, 1 +], 
E[1,2*] and E[2, 3'1 levels respectively, whereas the separation between E[O, 2 + ]  and 
E[O, 2-1 arises only from the second-order interaction of E[O, 2 + ]  with E[1, 11. 
Similarly in the u = 3 manifold E[O, 3+]  and E[O, 3-1 are separated by the difference 
in second-order interaction with E[1, 2'1 which are themselves split by a first-order 
perturbation. The level splitting E[O, 3+]  - E[O, 3-1 is therefore of order ( A / h ~ c o ) ~ .  
Proceeding to the general case the local-mode splitting of the [0, v] level is of order 
(A/hxco)". Similar considerations clearly account for the pattern of splittings in fig. 1. 

Turning to the opposite limit hxco<A it is readily verified that the eigenvalues of 
H ( * ) ( u )  fall into the sequence 

~ [ o ,  51, m, o 1 ECO, 51, 4%' o 
H'+'(5)  = d%, E[1, 41, 2/%A ; H'-'(5) = dTA, E[1, 41, V'KA 

E = -uA, -(u - 2)A, . . . vA (31) 
with a regular spacing of 2A indicative of the overtone and combination bands arising 
from two harmonic vibrations with frequencies (co - A) and (co + A), respectively. 

These two limits confirm the behaviour anticipated when the model was introduced. 
The transition between them is conveniently followed by plotting the general eigen- 
values as a function of (A/xco) using the reduced notation 

& = [E - E(u)]/[A~ + h2X2U2]* (32) 
where E(u) denotes the mean energy of the 0th manifold. The form of such a dia- 
gram, given in fig. 3 for u = 5,  shows the expected transition from doubly degenerate 
local modes to equally spaced harmonic energy levels, with the local-mode degeneracy 
persisting to higher (A/hxw> values the greater the disparity between the local-mode 
[n,, n,] quantum numbers. The relative order of the symmetric (+) and antisym- 
metric (-) levels depends on the sign of A, which is taken here to be positive. 

5 .  APPLICATION TO INDIVIDUAL MOLECULES 

In applying the theory to individual molecules our purposes are first to show that 
the present model can explain the main features of observed and calculated overtone 
spectra. Secondly we examine the extent to which the implied harmonic coupling 
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FIG. 3.-Scaled model eigenvalues, E = ( E  - l?)/(h2 + Ii2x2w2),+ for the u = 5 manifold, as a function 

can be attributed to purely momentum coupling, since this bears on the original pro- 
position8-" concerning the role of potential coupling between the bonds in the mole- 
cule. Finally the model may be used to extrapolate from the observed spectrum, to 
predict the positions of hitherto unobserved bands. 

The four parameters required by the model are the apparent Morse oscillator con- 
stants co' and xw, the frequency of the indirect coupling mode, wrc,  (at most one such 
mode is considered in each case) and the coupling strength 1. These parameters may 
be derived from the experimental spectrum with levels most conveniently identified 
by normal-coordinate labels (vl, v2, u,), u1 and v3 being taken to refer to the coupled 
modes and vz to the indirect mode. The structure 
of the matrices given by eqn (27)-(30) provides various estimates for the remaining 
parameters. Thus with all energies measured from the zero-point (0, 0, 0) level, it 
follows in the light of the correlations between normal- and local-mode labels shown 
in fig. 1 that 

of log,,(h/hxco). E is the mean energy of the manifold. 

w: is therefore identified with co2. 

I? = [E(l, 0, 0) - E(0, 0, 1)]/2 

= [E(3, 0, 0) - E(2, 0, 1)  + E(1, 0, 2) - E(O, 0 ,  3)]/4 (33) 
and 

hw' - 2hxw = [E(l, 0, 0) + E(0, 0, 1)] /2  

hw' - 3trxu = E(1, 0, 1)/2 

~ C O '  - 2 . 5 h x ~  = [E(2, 0, 0 )  + E(0, 0, 2)] /4  

hw' - 4.25hxw = [E(3, 0, 1) + E(1, 0, 3) ] /8 .  (34)  
Applications of the theory based on these estimates are given for H20, C2H2, C2D, 
and SO, below, using the derived parameter values given in table 1 .  
HzO 

Table 2 gives a comparison between the experimental level p o s i t i o n ~ , l ~ - ~ ~  those 
on the Sorbie-Murrell 2o surface, including given by a new variational calculation 
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TABLE 1 .-MODEL PARAMETER VALUES 

(hm'/hc)/cm-l 3876.2 3450.3 26 19.4 1271.6 
(hxw/hc)/cm- 84.4 58.4 23.6 7.5 
(hm',//zc)/cm- 1594.6 1974.3 1764.8 519 
(A/hc)/cm- -49.5 39.0 132.9 - 105.2 

both stretching and bending vibrations, and finally the levels calculated by the present 
model. The latter reproduce the experimental and numerical eigenvalues with stan- 
dard deviations of 7.5 cm-I and 6.3 cm-', the corresponding standard deviation 
between numerical and experimental results being 7.1 cm-'. This shows that the 
model performs remarkably well in reproducing the main features of the spectrum. 

It is also illuminating to examine the various contributions to the coupling strength 
1, the momentum terms in which may be deduced from knowledge of the valence- 
coordinate G matrix for a symmetrical XY2 molecule with bond length Y and interbond 
angle p2' 

1 Pi& mxl cos p, - (mXr)- l  sin p 
G = m s l c o s p ,  &, -(mXr)-' sin p I -(rnXr)-I sin p, -(mXr)-' sin p, 2[mx + my(l - cos p)]/rnxmyrz 

where pXy denotes the X-Y reduced mass. 
The bond angle p in H 2 0  is 104.5°15 from which it follows using eqn (16) and (19) 

TABLE 2.-EXPERIMENTAL NUMERICAL A N D  MODEL EIGENVALUES FOR H20 

1 0 0  
0 0 1  
2 0 0  
1 0 1  
0 0 2  
3 0 0  
2 0 1  
1 0 2  
0 0 3  
4 0 0  
3 0 1  
2 0 2  
1 0 3  
0 0 4  
5 0 0  
4 0 1  
3 0 2  
2 0 3  
1 0 4  
0 0 5  

0 1 +o 
0 1 -0 
0 2 +o 
0 2 -0 
1 1  0 
0 3 +o 
0 3 -0 
1 2 + O  
1 2 -0 
0 4 +o 
0 4 -0 
1 3 +o 
1 3 -0 
2 2  0 
0 5 +o 
0 5 -0 
1 4 +o 
1 4 -0 
2 3 +o 
2 3 -0 

3 657 
3 756 
7 201 
7 250 
7 445 

10 613 
10 868 
11 032 

13 831 

14 319 

- 

- 

- 

16 899 

17 496 
- 

3 663 
3 765 
7 206 
7 257 
7 462 

10 594 
10 608 
10 877 
11 055 
13 800 
13 802 
14 213 
14 323 
14 560 
16 830 
16 830 
17 429 
17 473 
17 745 
17 971 

3 658 
3 757 
7 201 
7 246 
7 460 

10 589 
10 600 
10 882 
11 069 
13 798 
13 799 
14 277 
14 343 
14 559 
16 832 
16 832 
17 466 
17 505 
17 792 
18 049 

Ref. (13)-(18); ref. (19). 



282 L O C A L  A N D  N O R M A L  V I B R A T I O N A L  STATES 

that u/hc = 28.6 cm-I and cr,/hc = 49.7 cm-', giving a direct momentum contribution 
of -28.6 cm-I to the total coupling strength 3Jhc = -49.5 cm-', but a negligible in- 
direct term of +0.63 cm-l because according to eqn (26), a, contributes to I I  only in 
second-order. Information on the division of the residual potential coupling is 
available by comparison between the present calculation and previous stretching-only 
 calculation^,^ which would be fit by A/hc = -53 cm-'. The difference of +4 cm-' it 
therefore attributable to indirect potential coupling, leaving - 19.9 cm-' due to direcs 
potential coupling between the bonds. 

C2H2 A N D  C2D2 

The available experimental i n f o r m a t i ~ n ~ ~ * ~ ~ - ~ ~  on the ( u ; ,  0, v,) levels of acetylene 
and deuteroacetylene is summarised in table 3. 

TABLE 3.-EXPERIMENTAL AND MODEL EIGENVALUES FOR C2H2, C2D2, so2 

1 0 0  0 1 + 0  
0 0 1  0 1 - 0  
2 0 0  0 2 + 0  
1 0 1  0 2 - 0  
0 0 2  1 1  0 
3 0 0  0 3 + 0  
2 0 1  0 3 - 0  
1 0 2  1 2 + O  
0 0 3  1 2 - 0  
4 0 0  O 4 + O  
3 0 1  0 4 - 0  
2 0 2  1 3 + 0  
1 0 3  1 3 - 0  
0 0 4  2 2  0 
5 0 0  0 5 + 0  
4 0 1  0 5 - 0  
3 0 2  1 4 + 0  
2 0 3  1 4 - 0  
1 0 4  2 3 + 0  
0 0 5  2 3 - 0  

3 373 
3 295 
6 502 
6 556 
6 709 

9 640 

9 835 

12 676 

- 

- 

- 

- 

- 
(1 5 600)d 

3 373 
3 295 
6 511 
6 550 
6 706 
9 636 
9 625 
9 976 
9 831 

12 615 
12 617 
12 910 
13 001 
13 192 
15 484 
15 484 
15 951 
15 914 
16 350 
16 153 

2 705 
2 439 

5 097 
- 

- 

- 
7 734 

9 794 

10 348 

- 

- 

- 
- 

11 905 

12 344 
- 

- 

2 705 
2 439 
4 854 
5 097 
5 388 
7 463 
7 244 
8 047 
7 735 
9 608 
9 801 

10 055 
10 351 
10 684 
12 111 
11 946 
12 628 
12 347 
13 297 
12 946 

1151 
1362 
2 296 
2 500 
2 715 
3 431 
3 630 

4 054 

4 751 

5 166 

- 

- 

- 

- 

1151 
1362 
2 295 
2 498 
2 716 
3 431 
3 627 
3 838 
4 063 
4 560 
4 747 
4 951 
5 170 
5 403 
5 906 
6 085 
6 282 
6 495 
6 721 
6 961 

a Ref. (15) and (22)-(24); 
(0, 0, 0) band in Herzberg." 

ref. (15) and (24)-(26); ref. (27) and (28); assigned as (0, 0, 5)- 

Notice that the coupling strength I I  given in table 2 is now positive, thereby reversing 
the order of symmetric and antisymmetric levels from that in fig. 1 and table 2. Se- 
condly ,i is larger and the anharmonicity hxw is smaller in C2D2 than in C2H2, a dif- 
ference that profoundly affects the relative natures of the overtone spectra. As seen 
in table 3 and fig. 4 the spectrum of C2H2 shows qualitatively the same local-mode 
doublet structure as that encountered in the case of H 2 0 .  The spectrum of C2D2 on 
the other hand is much more " normal " in nature with an almost uniform variation 
in the intervals between successive levels. 

Part of this difference in character is due to the change in bond anharmonicity, 
roughly in inverse proportion to the change in C-H reduced mass as required by a 
strict interpretation of the model. The major change is, however, due to the greatly 
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increased coupling strength A in C2D2 arising from the relatively near resonance be- 
tween the stretching frequencies of the C-D and C-C bonds, the dominant contribu- 
tion to ;1 being indirect momentum couplifig generated by the G matrix 

P d ,  0, -mE1 

G =  [o Pu,?: 3 -m;l 

Thus in the notation of eqn (1 S), pa, = n2,/2. It follows from eqn (19) and the values of 
w' in table 2 that ~ J h c  = 262 and 306 cm-I in C2H2 and C2D2, respectively, but this 
relatively small difference is greatly exaggerated in its second-order effect, as given by 
eqn (26). The resulting indirect msmentum coupling contributions are 40 cm-I for 

(36) 1 -mE1 -inE1, PG! - 

! O O O  I 
2 3' 

I- 

2 3- - 
- 22 

1 i+  - 
12' 13- K- 

13' - - - 11 12- 

C2D2 

2 2  - 

2 3' - 

2 3- - 

12+ 
13- - 

14' - 

l1 12- 13+ 
- 14- 

-- - 
- 

FIG. 4.-Calculated eigenvalues for the first five CHICD stretching overtone manifolds for C2Hz and 
CzD2, designated by local mode labels [n,, nb]. Short heavy lines mark available experimental levels. 

Energies are measured in each manifold from the lowest calculated level (see table 3). 

C2H2 and 197 cm-' for C2D2 after correcting the " observed " frequencies w' and co', 
in table 1 for the second-order shifts given in eqn (25). The corresponding values for 
A/hc in table 1 are 39 and 133 cm-I. This shows that the coupling in C2H2 is entirely 
attributable to the indirect momentum terms involving M, eqn (26). The same is al- 
most certainly true for C2D2, the overestimate obtained being attributable to the 
breakdown of second-order perturbation theory. Tn any case the substantial qualita- 
tive difference between the two overtone spectra is well-accounted for by the model. 

so2 
The case of SO2 is of interest in completing the transition from local-mode beha- 

viour in H 2 0  and C2H2 to an extremely regular normal-mode overtone spectrum. The 
very large coupling parameter A/hc = -105 cm-l would seem to dominate the very 
small anharmonicity (kxw/hc) = 7.53 cm-' given in table 2, but this anharmonicity is 
in fact required to account for the minor variations in level spacings shown in table 
3. Thus the present model again gives a good fit to the experimental level positions. 

Finally it is readily verified by substituting the appropriate masses in the matrix 
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given by eqn (41) that with the bond angle q~ = 119.3", the direct momentum coupling 
contribution to A/hc is -102.5 cm-I which may be compared with the full value of 
- 105 cm-'. We therefore have a good representation of a completely " normal " 
spectrum, reproduced within a bond separable potential model. 

6 .  S U M M A R Y  A N D  C O N C L U S I O N S  

It has been argued that the observation of a markedly irregular overtone spectrum 
for a symmetrical molecule should be interpreted as a sign of incipient decoupling 
between symmetry related bond vibrations in certain states, such decoupling beiog 
predicted to increase with further excitation. The cause of this decoupling was 
shown to be strong bond anharmonicity which can in favourable cases quench any 
interbond coupling terms arising either from potential- or kinetic-energy terms in the 
Hamiltonian. Thus local-mode behaviour should not be associated with a bond- 
separable potential approximation. 

A model embodying bond anharmonicity and both direct and indirect harmonic 
coupling between two bonds was introduced, and applied to the stretching spectra of 
H20,  C2H2, C2D2 and SO,. The important parameter in the model is the ratio of 
coupling strength to bond anharmonicity, very large and very small values of which 
give rise to " near-normal " and " near-local " behaviour, respectively. Of the mole- 
cules considered H 2 0  and C2H, lay towards the local limit, while C2D2 and SO2 
showed more normal behaviour. 

Analysis of the origin of the interbond coupling showed that in H 2 0  the dominant 
and roughly equally important mechanisms were direct potential and momentum 
coupling. In 
C2H2 and C2D2 the important term was indirect momentum coupling via the C-C 
stretching mode, this second-order effect being much stronger in C2D, than in C2H, 
due to the closer resonance between C-D and C-C vibrational frequencies. Finally 
in SO, direct momentum coupling between the bonds was sufficient to quench the 
weak bond anharmonicity, and to reproduce the experimental spectrum. 

Finally it should be recognised that the predicted increasingly near degeneracy 
with increasing excitation in the lowest local-mode progressions of H20  and C2H2 
remains to be tested experimentally. Direct observation of the effect is in principle 
possible in the infrared overtone spectrum. of H 2 0  because both symmetric and anti- 
symmetric stretching modes are infrared active. The analysis is, however, compli- 
cated by the large rotational constants, principally due to strong Coriolis interaction, 
but also because the rotational envelope width (BkT)' E 100 cm-' exceeds even the 
predicted [03'] band origin separation by an order of magnitude. In the case of 
C2H2 on the other band direct information on the highly excited Eg CH stretching 
states would be available only from the Raman overtone spectrum. 

Indirect coupling cia the bending mode was relatively unimportant. 

The authors are grateful for discussions with and some computational assistance 
from Dr. L. Halonen. 
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