Lecture 3

Tandem MS & Protein Sequencing

Nancy Allbritton, M.D., Ph.D.
Department of Physiology & Biophysics
824-9137 (office)
nlallbri@uci.edu

Office- Rm D349
Medical Science D Bldg.
Tandem MS

Steps:
1. Mass Analysis
2. Collision (Fragmentation)
3. Mass Analysis

Collisional Activation-
1. Impart kinetic energy to an ion by collision with an inert gas.
2. Kinetic energy is converted to internal energy in the ion.
3. Fragmentation of the unstable ion.

Precursor Ion + Inert Gas \rightarrow Product Ions
(N$_2$, Ar, He)
Tandem MS

1. Tandem in Space- >1 mass analyzer

2. Tandem in Time-
 a. 1 mass analyzer only
 b. sequentially trap ions

Precursor ion mass analysis

Collision-induced fragmentation

Precursor ion selection by m/z

Product ion mass analysis
Tandem in Space

Mass Analyzer 1 - Collision Cell - Mass Analyzer 2

Ex: Quadrupole - Collision Cell - Quadrupole
Quadrupole - Collision Cell - Time of Flight

Collision Cells: RF-only quadrupoles, hexapoles, or octapoles

Collision Cell Functions:
1. Fragment selected ion
2. Contain all product ions *i.e.* all m/z
3. Transmit product ions to 2nd mass analyzer
Quadrupole-Quadrupole

RF-Only Octopoles
Ion Focusing
Collision Cell

Quadrupoles
Mass Analyzers

Electrospray ion source
Octopole lens
First quadrupole mass filter
Second quadrupole mass filter

Detector
Quadrupole-TOF

RF-Only Hexapoles
Ion Focusing
Collision Cell

Mass Analyzers
Quadrupole
TOF

Electrospray ion source
Hexapole lens
Hexapole collision cell
Quadrupole mass filter
Reflectron

Pusher
Detector
Tandem in Time

Single Ion Trap
1. Trap all m/z ions.
2. RF scan to eject all m/z except the targeted m/z.
3. Apply RF pulse to accelerate trapped ions and fragment ions via gas collisions.
4. Perform m/z scan of product ions.

Wysocki et al, Methods, 2005, 35:211.
MS-MS Scan Modes

A. Mass spectrum scan
- MS I: Transmit all ions
- Collision cell: Transmit all ions
- MS II: Scan to acquire spectrum

Measure m/z:
No Collisions

B. Product ion scan
- MS I: Mass select a single m/z
- Collision cell: CID
- MS II: Scan to acquire spectrum

Product Ion Scan:
Peptide Sequencing

C. Precursor ion scan
- MS I: Scan to acquire spectrum
- Collision cell: CID
- MS II: Mass select a single m/z

Precursor Ion Scan:
Phosphorylated Peptides
(PO$_3^-$ m/z = 79)
Protein Sequencing

"Bottom-Up" Sequencing-
(a. Cleave protein into peptides.
(b. Send peptides into MS for sequencing

"Top-Down" Sequencing-
(a. Send intact protein into mass spec.
(b. Fragment & sequence

Why peptides instead of proteins?
1. Increased stability
2. Better solubility
3. Greater sensitivity
4. Easier to sequence if ≤ 20 amino acids
5. Fewer (usually ≤1) translational modifications/peptide
6. Cheaper instrumentation
 (proteins require an FTICR for sequencing)
Protein Sequencing By MS

Protein Cleavage

Proteases- Must be sequence specific & stable
 Ex: Trypsin, Lys-C, Asp-N, Glu-c

Trypsin- Cleaves peptides on the C-terminal side of Arg & Lys
1. Converts proteins to peptides of < 20 amino acids
2. Yields peptides with a C-terminal basic residue
3. With ESI/MS, yields doubly charged peptides
 amino terminus + basic residue

Measured m/z = (M + 2H\(^+\)) / 2\(^+\)

Ex: peptide mass = 1232.55
m/z = (1232.55 + (2 \times 1.0073)) / 2
 = 617.28
Proteolyzed Proteins Need Separation

Cleaved proteins yield a complex peptide mixture & must be separated prior to MS.

Separation Characteristics:

1. Typically reverse phase (hydrophobicity)
 May need multi-dimensional separation.
2. Remove contaminants *i.e.* detergents, salts
3. Reduce complexity but overlapping peaks OK
4. Couple directly to ESI/MS
 a. Elute in smallest possible volume
 b. Peak width of 10-60 s

Ex: μscale- HPLC, capillary electrophoresis, microfluidic chips
Isotope Clustering of Peptides

1% probability of carbon being 13C instead of 12C.

Peptide peak = Cluster of peaks separated by 1 Da.

For:

- $(M + H^+)$ $\Delta m/z = 1$ Th
- $(M + 2H^+)$ $\Delta m/z = 0.5$ Th
- $(M + 3H^+)$ $\Delta m/z = 0.33$ Th
MS Traces for Separated Peptides

1. Total Ion Chromatogram
 ESI Current vs Time

2. MS Spectrum of Ions
 at 42.2-42.8 s

3. Isotope Cluster for Peptide
 at m/z = 617.28
 (z = +2)

Steen & Mann Nat,
Peptide Fragmentation in a Collision Cell

1. Due to collisions with gas.

2. Mobile proton from the amino terminus promotes cleavage.

4. At low energies, get mostly \textbf{b- and y-ions}:
 - **b-ions**: amino terminal fragment if it retains H\(^+\) (+1 charge)
 - **y-ions**: carboxy terminal fragment (+1 or +2 charge)
Peptide Fragmentation

1. A series of b- and y-ions are produced due to the fragmentation of different amide bonds.
2. Subscript refers to the number of R groups on the fragment.
3. y-ions are more common and more stable than b-ions.

y-Ion Series

\[(M+2H)^{2+} = 717 \text{ Da} \]

\[\Delta = 72 \text{ Da} \]

ATSFYK

\[\Delta = 101 \text{ Da} \]

TSFYK

\[\Delta = 87 \text{ Da} \]

SFYK

\[\Delta = 147 \text{ Da} \]

FYK

\[\Delta = 163 \text{ Da} \]

YK

\[\Delta = 147 \text{ Da} \]

K
Peptides Can Fragment At Other Sites

1. Amino Terminal Fragments:
 \(a_m, b_m, c_m \)

2. Carboxy Terminal Fragments:
 \(x_n, y_n, z_n \)

3. The fragments can also fragment espec if have a mobile \(H^+ \)

4. Various side chain reactions

b-ions Can Fragment to a-ions
Sequencing From A y-Ion Series

1st MS Analysis
Select Ions at 617.28 & Send to Collision Cell
2nd MS Analysis of the Fragments (mostly y-ions)
Sequencing From A y-Ion Series

2.5 mtorr Ar
30 eV

(M + 2H)^2+
546.2

DTDSEEEIR (MW=1092.5)

SEEIR
DSEEEIR

b_2
b_3
b_7
b_8
a_2
y_1
y_2
y_3
y_5
y_6
y_7
EEEIR
EIR
IR
R

200 400 600 800 1000
MS/MS Spectra Can Be Complex

1. Many types of fragments.
 (Some expected ones will be absent.)

2. Amino acid isomers- Leucine & Isoleucine, m = 113.08

3. Amino acid isobars- Glutamine (m = 128.06)
 Lysine (m = 128.09)

4. Table 4.3. Amino acids combinations that are equal to a single amino acid residue mass.*

<table>
<thead>
<tr>
<th>Amino acid combination</th>
<th>Residue mass (Da)</th>
<th>Equivalent amino acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG</td>
<td>114</td>
<td>N</td>
</tr>
<tr>
<td>GA</td>
<td>128</td>
<td>Q, K</td>
</tr>
<tr>
<td>GV</td>
<td>156</td>
<td>R</td>
</tr>
<tr>
<td>GE</td>
<td>186</td>
<td>W</td>
</tr>
<tr>
<td>AD</td>
<td>186</td>
<td>W</td>
</tr>
<tr>
<td>SV</td>
<td>186</td>
<td>W</td>
</tr>
<tr>
<td>SS</td>
<td>174</td>
<td>C<sup>a</sup></td>
</tr>
</tbody>
</table>
Convert Peptide Sequencing Problem To A Database Searching Problem

Only a very small fraction of the possible amino acid sequences actually occur in nature!

1. Peptide fragment spectrum may be insufficient to sequence de novo.
2. But it might be enough to match it to a database of fragments of known proteins.
3. Expected proteins/fragments are derived from the sequenced genomes.
MALDI Fingerprinting

1. Purify protein.

2. Digest with trypsin.

3. Perform MALDI-MS (NOT tandem MS).

4. Obtain a signature for that protein composed of the peptide masses.

5. Compare peptide masses to a database of expected peptide masses from each known protein for that species.

6. Frequently this identifies the protein and its amino acid sequence unambiguously.
Database Searching- Peptide Sequence Tags

1. Identifies small portions of easily interpreted sequences \[i.e. \text{"amino acid tags"}\]

2. Also identify distance in mass to each peptide terminus.

3. Compare to database.
Database Searching- Sequest Algorithm

Compare experimental spectra to theoretical spectra of each protein in a database.

Perform Cross-correlation

Report matches & a probability score

Database Searching- Mascot Search

1. Also compares experimental spectra to theoretical spectra of each protein in a database.

2. Most intense fragments of b- & y-ions are matched first.

3. Probability that the fragment matches could all be random is calculated & reported.
Making MS Quantitative

Signal Intensity Does Not Correlate With Amount!

1. Absolute Quantitation-
 Isotopically labeled internal standards

2. Relative Quantitation-
 Use stable isotopes
 Replace 1H with 2H
 12C with 13C
 14N with 15N
 16O with 18O
Relative Quantitation-SILAC

SILAC = Stable Isotope Labeling in Cell Culture

Relative Quantitation-ICAT

ICAT = Isotope-Coded Affinity Tag

References